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The effects of Coulomb interactions on the transport properties of the relativistic electron through graphene-
based double-barrier structures have been investigated. A self-consistent Green’s function method has been
developed by solving numerically the Dyson equation in the Hartree-Fock approximation. The transmission
probability, conductivity, shot noise, and Fano factor through the structures have been calculated and analyzed.
It is shown that Klein tunneling is suppressed strongly by taking into account the electron-electron interaction.
In contrast, the Fano factor shows abrupt increase. The shot noise is either improved or suppressed, which
depends on the energy of the incident electron and the strength of the electron-electron interaction. The
physical originations for these phenomena have been discussed.
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I. INTRODUCTION

In recent years, there has been increased interest in study-
ing the physical properties of graphene and graphene-based
microstructures since their experimental realization.1 In
graphene, the quasiparticle excitations around the Dirac
point obey linear Dirac-type energy dispersion law, which
can be described by a two-dimensional Dirac equation.2,3

The presence of such Dirac-type quasiparticles is expected to
lead to a number of unusual electronic properties and opens
the possibility to study relativistic effects such as Klein
paradox4–12 and Zitterbewegung13–15 in the condensed-matter
experiments.

The Klein paradox describes a tunneling phenomenon of a
relativistic electron through a high potential barrier.4 It pre-
dicts that the electron can pass through the high potential
barrier to approach the perfect transmission in contrast to the
conventional nonrelativistic tunneling where the transmis-
sion probability exponentially decays with the increasing of
the barrier height. Recently, such a phenomenon in various
graphene-based microstructures such as single-barrier and
double-barrier structures,5,6 quantum well and dot,7–9 and n-p
junctions10 and superlattice11 has been investigated theoreti-
cally. The experimental observations for such a phenomenon
in the graphene-based single junction have also been
performed.12 However, all these investigations neglect the
effect of the electron-electron interaction.

Recent researches show that the electron-electron interac-
tion is of crucial importance for understanding some physical
properties in the graphene and graphene-based
microstructures.16–24 For example, the electron-electron in-
teraction in suspended graphene can generate an electronic
gap and result in semimetal-insulator transition,16,17 it can
provide the leading correction to the conductivity, charging
accumulation, and quantum confinement effects in the
microstructures.18–24 Recent theoretical calculation of the
spectral function with the electron-electron interaction en-
ables an excellent understanding of the experimental data of
angle-resolved photoemission spectroscopy.25–28 In general,
there are two kinds of method, perturbative27–31 or
nonperturbative,16–24 to study theoretically the effect of the

electron-electron interaction on physical properties in the
graphene and graphene-based microstructures. For weak in-
teractions, the perturbative approach at some cases works
quantitatively well, which is in agreement with one-loop
renormalization group calculations.29,30 However, for some
cases, all orders of perturbation need be considered.31

In this work, we investigate the effects of the electron-
electron interaction on the transport properties of the relativ-
istic electron through graphene-based double-barrier struc-
tures. We develop a self-consistent Green’s function method
by solving numerically the Dyson equation in the Hartree-
Fock approximation. The transmission probability, conduc-
tance, shot noise, and Fano factor through the structures are
calculated. The relationship between the electron-electron in-
teraction and Klein tunneling is also analyzed in detail. The
rest of the paper is organized as follows. In Sec. II, we de-
scribe the theory and method. The numerical results and dis-
cussion are presented in Sec. III. A conclusion is given in
Sec. IV.

II. THEORY AND MODEL

We consider a double-barrier resonant structure
�G / IG /G / IG /G� in a monolayer graphene sheet occupying
the xy plane, which the schematic potentials of the model
are shown in Fig. 1. The left and right electrodes are
separated from the central G by two barrier potential V1
and V2 with width d1 and d2, respectively. Such a local bar-
rier can be implemented by either using the electric field
effect or local chemical doping.1,12 The potential profile
V�x� in the system may be adjusted independently
by a gate voltage or doping, which is taken as V�x�
=V1��x���d1−x�+V2��x−L−d1���L+d1+d2−x�. Here we
assume that the electron-electron interaction bounded by the
two barriers is restricted in the middle well region
�d1�x�d1+L�. Meanwhile, we focus here on the case
where the width �along y axis� of the graphene strip, Ly, is
much larger than L. That is to say, L�Ly. In this case the
details of the microscopic description of the strip edges be-
come irrelevant. In addition, we only consider the structure
without localized edge states similar to other discussions on
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Klein tunneling such as Refs. 5–12. Thus, the intervalley
scattering does not appear in the present case.32

The Hamiltonian of the system with electron-electron in-
teraction can be written as

H = H0 + H1 �1�

with

H0 = − i�vF� � + V�x� �2�

and

H1 =
e2

4���r� − r�� �
, �3�

where H0 is the Hamiltonian of the system without the
electron-electron interaction, vF�106 ms−1 is the Fermi ve-
locity, and �= ��x ,�y� are the Pauli matrices. Here H1
represents the Coulomb interaction, the vectors r� and r��
label the positions of the electrons, and � is the dielectric
constant of the graphene. If the electron-electron interactions
are neglected, the unperturbed Green’s function of the sys-
tem �G0�x ,x� ,��� can be defined as ��−H0�G0�x ,x� ,��
=��x−x��, which is similar to the case of the nonrelativistic
particles.33 Such a differential equation can be solved by us-
ing the similar method in Ref. 34. Thus, the unperturbed
Green’s functions in different regions of the system can be
obtained. According to the positions of the arguments x and
x�, these Green’s functions can be grouped into Gcc

0 �x ,x� ,��,
Gcl

0 �x ,x� ,��, Grc
0 �x ,x� ,��, and Grl

0 �x ,x� ,��. Suffixes denote
regions in which the arguments x and x� fall. For example,
Grl

0 �x ,x� ,�� indicates that x is in the right region
�x	d1+d2+L� and x� in the left �x��0�. The suffix c rep-
resents the center region �d1�x�d1+L�. If we set
d1=d2=d and V1=V2=V, these Green’s functions can be ex-
pressed as

Gcc
0 �x,x�,�� =

1

i�vF
� 1 e−i


ei
 1
�eik�x−x�� + ��eik�x�−d�rcle

ikl

+ eik�L+d−x���rcr
1

i�vF
� 1 − ei


− e−i
 1
�eik�L+d−x��

+ ��eik�x�−d�

+ eik�L+d−x��rcre
ikL�rcl

1

i�vF
� 1 e−i


ei
 1
�eik�x−d�,

�4�

Gcl
0 �x,x�,�� = tlc�eik�−x��	 1

i�vF
� 1 e−i


ei
 1
�eik�x−d�

+ rcr
1

i�vF
� 1 − ei


− e−i
 1
�eik�2l+d−x�
 , �5�

Grc
0 �x,x�,�� = tcr�eik�x−L−2d�	 1

i�vF
� 1 e−i


ei
 1
�eik�x�−d+L�rcl

+
1

i�vF
� 1 − ei


− e−i
 1
�eik�L+d−x��
 , �6�

Grl
0 �x,x�,�� = eik�−x��tlce

ikL�tcr
1

i�vF
� 1 e−i


ei
 1
�eik�x−L−2d�.

�7�

Where K=� /�v, k=K cos 
, and 
 is the incidence angle of
the electron; �=1 / �1−e2ikdrclrcr�; rcl and rcr represent the
reflection amplitudes from the region c into regions l and r,
respectively. Here tlc corresponds to the transmission ampli-
tude from the region l into the region c and tcr to that from
the region c into the region r. If the electron-electron inter-
action is considered and assumed to be restricted in the well
region bounded by the two barriers, the Green’s functions of
the system can be obtained by a perturbation expansion in
the interacting representation. Due to the translational sym-
metry holding for the parallel component of the wave vector,
we only consider one-dimensional Green’s function which
propagates along the x axis. Such a Green’s function in the
well region is expressed by the following Dyson equation:

Gcc�x,x�;�� = Gcc
0 �x,x�;��

+� dx1dx1�Gcc
0 �x,x1;����x1,x1�;��Gcc�x1�,x�;�� .

�8�

Here ��x1 ,x1�� represents the self-energy of the system. It is
determined by only the Green’s function Gcc among the four
types of the self-consistent Green’s functions because we
have assumed that the Coulomb interaction works exclu-
sively in the well region. In the Hartree-Fock approximation,
it is described by the following form:

1d

1V

1V

L
2d

2V

2V
k

E

l c r

0 x

FIG. 1. Schematic diagrams of potential profile for the
G / IG /G / IG /G structure. The top picture corresponds to the spec-
trum of the quasiparticles in different monolayers. The spectrums of
electron and hole are linear. The solid and dashed lines emphasize
the origin of the linear spectrum, which is the crossing between the
energy bands associated with crystal sublattices. The cross points
represent the Dirac points. Here l, c, and r represent the region of
left lead, central well, and right lead, respectively.
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��x1,x1�� = 2��x1 − x1���
d1

L+d1

dx2V��x1 − x2��
−M

0

d��−
1

�
�

�Im Gcc�x2,x2,�� − V��x1 − x1���
−M

0

d�� i

2�
�

��Gcc�x1,x1�,�� − Gcc
� �x1�,x1,��� . �9�

Where the function V��x−x�� is the one-dimension effective
Coulomb potential, which can be given by

V��x − x�� =� dydy�f0
��y�f0

��y��H1f0�y��f0�y� . �10�

Here f0�y�= 1
�Ly

exp i
� py is separable normalized wave func-

tion along y direction and p is quantized momentum. In fact,
when L�Ly, it can be regarded as continue spectrum ap-
proximately. Inserting f0�y� into Eq. �10�, we find that the
one-dimension effective Coulomb potential is independent
on the p in the calculation. The integration in Eq. �10� is
taken over in the region 0�y�Ly.

Noting that the self-energy � in Eq. �9� also contains the
Green’s function Gcc, so we have to solve Eqs. �8� and �9�
self-consistently. In order to solve numerically these integral
equations, we need discretize the continuous coordinate and
energy. The coordinate x within the well region is divided
into Nx elements, the energy between 0 and M is divided
into Ny regions. The values of the Nx and Ny determine the
accuracy of the calculation. We can obtain the solutions with
high accuracy through choosing suitable Nx and Ny.

After the Green’s function Gcc is obtained, the other
Green’s functions such as Gcl and Grl can be obtained by the
following Dyson equation:

Gcl�x,x�;�� = Gcl
0 �x,x�;��

+� dx1dx1�Gcc
0 �x,x1;����x1,x1�;��Gcl�x1�,x�;��

�11�

and

Grl�x,x�;�� = Grl
0 �x,x�;��

+� dx1dx1�Grc
0 �x,x1;����x1,x1�;��Gcl�x1�,x�;�� .

�12�

Then, the transmission amplitude ttotal through the double-
barrier structure can be calculated by the following equation:

ttotal�E� = i�vFGrl�L + d1 + d2,0� . �13�

Therefore, the tunneling probability is given by
T= �ttotal�E��2.

After the transmission coefficients are obtained, the total
conductivity can be calculated. According to Buttiker
formula,11 at zero temperature the total conductivity in this
system is given by

G = G0�
0

�/2

T�E,�2E sin 
�cos 
d
 , �14�

where G0=2e2mvFLy /�2, Ly is the width of the graphene
strip �along y axis�. Similarly, we can also study the shot
noise �S� and Fano parameter �F� in the system35,36

S = S0�
0

�/2

T�1 − T�cos 
d
 , �15�

F =
−�/2

�/2 T�1 − T�cos 
d


�
−�/2

�/2

T cos 
d


, �16�

where S0=16 e3V
h

ELy

��vF
, E is the energy of the incident electron.

Combining Eqs. �13�–�16�, the conductivity, shot noise, and
Fano parameter for the double-barrier structures can be ob-
tained by the numerical calculations.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide comparison between the nu-
merical results in the presence and absence of the electron-
electron interaction. The calculated results for the transmis-
sion probability T as a function of the angle �
� and the
energy �E� of the incident electron are plotted in Fig. 2. Here
the thicknesses of the well and the barrier are taken as
L=50 nm and d=50 nm, respectively. The transverse width
of the graphene strip is taken as Ly =500 nm. The strength of
the barrier is taken as V=200 meV and the maximal chemi-
cal potential in the well region is taken as M =80 meV.5,14

Figure 2�a� shows the calculated results without the electron-
electron interactions and Fig. 2�b� corresponds to that with
the electron-electron interaction � /M =0.4�. In the calcula-
tion we find that the sum of the transmission and reflection
coefficients is near 1 and the error is controlled below 1%,
when the discrete elements Nx and Ny are taken as 20 and
200, respectively. It is seen from Fig. 2�a� that the structure
remains always perfectly transparent for the normal inci-
dence, no matter what the value of the energy for the incident

FIG. 2. �Color online� Transmission probability �T� as a func-
tion of the angle �
� and the energy �E� of the incident electron. �a�
and �b� correspond to the case without � /M =0� and with
� /M =0.4� the electron-electron interaction, respectively.
Here L=50 nm, d=50 nm, Ly =500 nm, V=200 meV, and
M =80 meV.
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electron is. This is the feature unique to massless Dirac fer-
mions and directly related to the Klein tunneling. Due to the
chiral nature of the quasiparticles, the tunneling is also
highly anisotropic and the angular dependence of transmis-
sion probability exhibits oscillation behavior, which has been
pointed out in previous investigation.11

However, the changes take place with the introduction of
the electron-electron interaction. It is seen from Fig. 2�b� that
the peak of the transmission probability shifts toward higher
energy, although the oscillation phenomena still keep. This is
because the Coulomb energy appears after the electron-
electron interaction is taken into account, which results in the
change in the chemical potential in the well. The other strik-
ing feature is that the transmission probability is suppressed
strongly. This can be seen more clearly from Fig. 3.

Figure 3 shows the transmission probabilities of the nor-
mal incident electron as a function of incident energy with
various chemical potential in the well. Increasing the value
of the chemical potential, corresponding to increasing the
number of electrons, makes the Coulomb energy in the well
region become larger. Therefore, the strength of the electron-
electron interaction is depicted by the value of the chemical
potential. The solid line, dashed line, dotted line, and dot-
dashed line correspond to  /M =0,  /M =0.2,
 /M =0.6, and  /M =1, respectively. As can be seen
clearly, the transmission probability decreases quickly with
the increase in the chemical potential. For example, the
transmission probability decreases 40% when  /M =0.1 is
taken. It becomes 76% corresponding to  /M =0.6. In fact,
such a phenomenon corresponds to the Coulomb blockade
effect or the energy gap arises from the electron-electron
interaction. Recently, based on the Monte Carlo method,
Drut and Lähde have investigated the phase diagram of
graphene material and pointed out that the electron-electron
interaction can generate the energy gap in suspended
graphene samples.16 Our present results can be regarded as
the corresponding to the phenomenon in the double-barrier
structure.

Such a phenomenon is not sensitive to the structural pa-
rameters of the system. Figure 4�a� shows the transmission
probability of the normal incident electron as a function of E

with various transverse width of the sample. The solid line,
dashed line, and dotted line correspond to the cases with
Ly =4L, Ly =6L, and Ly =10L, respectively. Although the sup-
pression of T becomes stronger with the decrease in the
transverse width of the sample, the change feature keeps the
same for them. For a large transverse width such as
Ly 	10L, such a size effect is negligible. The corresponding
results for the transmission probability as a function of E
with different well width at Ly =10L are plotted in Fig. 4�b�.
The suppression phenomena are observed again for all cases.
It is interesting that two different energy regions appear, one
is at E /M 	0.55 where the T increases with the increase in
the well width and the other is at E /M �0.55 where the T
decreases with the increase in the well width. As E /M is
taken around 0.55, the transmission probability is indepen-
dent on the well width. This is because the strength of the
electron-electron interaction increases with the decrease in
the well width. At the same time, the effect of the electron-
electron interaction on the transmission property decreases
due to the decrease in the well width. That is to say, the
above phenomena originate from the competition between
the size effect and the electron-electron interaction.

With the transmission probability obtained, we now turn
to the angularly averaged conductivity and shot noise prop-
erties. In Figs. 5�a� and 5�b�, we plot the two-dimensional
conductivity G and shot noise S through G / IG /G / IG /G
structure as a function of the energy of the incident electron,
respectively. The solid lines, dashed lines, and dotted lines
correspond to the cases with  /M =0, 0.4, and 1.0, respec-
tively. In the absence of the electron-electron interaction, the
conductivity exhibits oscillatory behaviors with the increase
in the energy of the incident electron, which agrees well with
those in the previous investigation.11 With the introduction of
the electron-electron interaction, the suppression effect of the
conductivity is observed. For example, the conductivity is
suppressed 55% at E /M =0.6 for  /M =0.4, the corre-
sponding suppression can reach 86% for  /M =1.0. These
are similar to the case of the transmission probability and can
be understood by the same way.

In contrast, the shot noise exhibits more complex feature.
First, the shot noise is also an oscillation function of the
energy of the incident electron. However, the peaks of the
oscillation move toward lower energy with the introduction
of the electron-electron interaction, which is opposite to the
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FIG. 3. Transmission probability �T� of the normal incident
electron as a function of E with various chemical potential in the
quantum well. Solid line, dashed line, dotted line, and dot-dashed
line correspond to  /M =0,  /M =0.2,  /M =0.6, and
 /M =1, respectively. The other parameters are taken the same as
in Fig. 2.
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FIG. 4. �a� Transmission probability �T� of the normal incident
electron as a function of E with various well width and �b� trans-
verse width of the sample. The other parameters are marked in the
figures.
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feature of the transmission probability and the conductivity.
The value of the shot noise is either improved or suppressed,
which depend on the incident energy and the strength of the
electron-electron interaction. As the electron-electron inter-
action is small, the shot noise is always improved by the
effect of the electron-electron interaction. When the strength
of the electron-electron interaction becomes very strong such
as  /M =1 �dotted line in Fig. 5�b��, the shot noise is sup-
pressed at some regions of the incident energy. This can be
understood by the definition of the shot noise. From Eq. �15�,
we know that the maximum of the shot noise appears at T
=1 /2. Due to the suppression of the Klein tunneling by the
electron-electron interaction, the transmission probability be-
comes near T=1 /2 with the introduction of the electron-
electron interaction, which leads to the increase in the S.
However, when the electron-electron interaction becomes
very strong, the transmission probability and conductivity
are suppressed so strong that they are far lower than 1/2. This
makes the shot noise becomes small in comparison with the
case without the electron-electron interaction.

Another remarkable transport property in graphene micro-
structure is demonstrated in the Fano factor. The calculated
results for the Fano factor as a function of the energy in the
presence and absence of the electron-electron interaction are
plotted in Fig. 6. The solid line and dashed line correspond to
 /M =0.4 and  /M =0, respectively. In the absence of the
electron-electron interaction, oscillations of the Fano factor
with maximums F=1 /3 are observed due to the angular an-
isotropy in the transmission of relativistic quasiparticles,
which is agreement with the previous investigations.35,36

When the electron-electron interaction is taken into account,

the Fano factor is improved largely. For example, the peaks
rise from 1/3 about 0.76 and 0.85 for  /M =0.4 and
 /M =1.0, respectively. The enhancement of the Fano fac-
tor can also be understood by the transmission suppression
caused by the electron-electron interaction. Such a phenom-
enon is similar to the case of the graphene with the energy
gap.

IV. SUMMARY

In the Hartree-Fock approximation, we have investigated
the transport properties of the relativistic electron through
the graphene-based double-barrier structures by solving the
Dyson equation self-consistently. The relationship between
Klein tunneling and the electron-electron interaction has
been analyzed in detail. The transmission probability, con-
ductivity, shot noise, and Fano factor have been calculated.
When the electron-electron interaction is taken into account,
we have found that the peak of the transmission probability
not only shifts toward higher energy, its value can be sup-
pressed strongly. When the interaction becomes larger, the
conductivity can be suppressed more than 80%. This is cor-
responded to the Coulomb blockade effect or the energy gap
arises from the electron-electron interaction. In contrast, the
Fano factor shows abrupt increase. The shot noise is either
improved or suppressed, which depends on the energy of the
incident electron and the strength of the electron-electron
interaction. We hope that our theoretical results can provide
important reference to design the electron device based on
the graphene materials.
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